Trong nội dung bài viết này, công ty chúng tôi sẽ chia sẻ lý thuyết và những dạng bài bác tập về phương trình lượng giác cơ bạn dạng giúp những ôn lại kỹ năng và kiến thức để sẵn sàng hành trang thật cẩn thận cho những kỳ thi đạt kết qua cao nhé


Lý thuyết phương trình lượng giác cơ phiên bản thường gặp2. Phương trình cos x = cos α, cos x = a (2)Các dạng bài xích tập về phương trình lượng giác

Lý thuyết phương trình lượng giác cơ phiên bản thường gặp

1. Phương trình sin x = sin α, sin x = a (1)

Nếu |a|>1 thì phương trình vô nghiệm.

Bạn đang xem: Phương trình lượng giác cơ bản

Nếu |a|≤1 thì chọn cung α thế nào cho sinα=a. Khi đó (1)

*

Các trường hợp quánh biệt:

sin x = 0 ⇔ x = kπ (k ∈ Z)

sin x =1 ⇔ x = π/2 + k2π (k ∈ Z)

sin x = -1 ⇔ x = -π/2 + k2π (k ∈ Z)

sin x = ±1 ⇔ sin2x = 1 ⇔ cos2x = 0 ⇔ cosx = 0 ⇔ x = π/2 + kπ (k ∈ Z)

2. Phương trình cos x = cos α, cos x = a (2)

Nếu |a|>1 thì phương trình vô nghiệm.

Nếu |a|≤1 thì lựa chọn cung α làm sao để cho cosα = a.

Khi kia (2) ⇔ cosx = cosα ⇔ x = ± α + k2π (k ∈ Z)

b. Cosx = a điều kiện -1 ≤ a ≤ 1

cosx = a ⇔ x = ± arccosa + k2π (k ∈ Z)

c. Cosu = cosv ⇔ cosu = cos( π – v)

d. Cosu = sinv ⇔ cosu = cos(π/2 – v)

e. Cosu = – sinv ⇔ cosu = cos(π/2 + v)

Các trường hợp đặc biệt:

*

3. Phương trình tung x = tung α, tan x = a (3)

Chọn cung α làm sao để cho tanα = a. Lúc đó (3)

*

Các ngôi trường hợp quánh biệt:

tanx = 0 ⇔ x = kπ (k ∈ Z)

tanx = ±1 ⇔ x = ± π/4 + kπ (k ∈ Z)

4. Phương trình cot x = cot α, cot x = a (4)

Chọn cung α làm sao cho cotα = a.

Khi đó (3) cotx = cotα ⇔ x = α + kπ (k ∈ Z)

cotx = a ⇔ x = arccota + kπ (k ∈ Z)

Các ngôi trường hợp quánh biệt:

cotx = 0 ⇔ x = π/2 + kπ (k ∈ Z)

cotx = ±1 ⇔ x = ± π/4 + kπ (k ∈ Z)

5. Phương trình bậc nhất đối với 1 hàm số lượng giác

Dạng asinx + b; acosx + b = 0; atanx + b = 0; acotx+ b = 0 (a, b ∈ Ζ, a ≠ 0)

Cách giải:

Đưa về phương trình cơ bản, ví dụ asinx + b = 0 ⇔ sinx = -b/a

6. Phương trình bậc hai so với một hàm số lượng giác

Dạng asin2x + bsinx + c = 0 (a, b ∈ Ζ, a ≠ 0)

Phương pháp

Đặt ẩn phụ t, rồi giải phương trình bậc hai đối với t.

Ví dụ: Giải phương trình asin2x + bsinx + c = 0

Đặt t = sinx (-1≤ t ≤1) ta có phương trình at2 + bt + c = 0

Lưu ý lúc đặt t = sinx hoặc t = cosx thì yêu cầu có điều kiện -1≤ t ≤1

7. Một số trong những điều buộc phải chú ý:

a) khi giải phương trình gồm chứa những hàm số tang, cotang, bao gồm mẫu số hoặc đựng căn bậc chẵn, thì độc nhất thiết phải đặt đk để phương trình xác định

*

b) Khi tìm được nghiệm bắt buộc kiểm tra điều kiện. Ta thường dùng một trong các cách sau để bình chọn điều kiện:

Kiểm tra trực tiếp bằng phương pháp thay quý giá của x vào biểu thức điều kiện.Dùng mặt đường tròn lượng giác để màn trình diễn nghiệmGiải những phương trình vô định.

c) sử dụng MTCT nhằm thử lại các đáp án trắc nghiệm

Các dạng bài tập về phương trình lượng giác

Dạng 1: Giải phương trình lượng giác cơ bản

Phương pháp: Dùng những công thức nghiệm tương ứng với mỗi phương trình

Ví dụ 1: Giải các phương trình lượng giác sau:

a) sinx = sin(π/6). C) tanx – 1 = 0

b) 2cosx = 1. D) cotx = tan2x.

Lời giải

a) sin⁡x = sin⁡π/6

*

b) 2cosx = 1 ⇔ cosx = ½ ⇔ x = ± π/3 + k2π (k ∈ Z)

c) tan⁡x = 1 ⇔ cos⁡x = π/4 + kπ (k ∈ Z)

d) cot⁡x = tan⁡2x

⇔cotx = cot(π/2 – 2x)

⇔ x = π/2 – 2x + kπ

⇔ x = π/6 + kπ/3 (k ∈ Z)

Ví dụ 2: Giải các phương trình lượng giác sau:

a) cos2 x – sin2x =0.

b) 2sin(2x – 40º) = √3

Lời giải

a) cos2x – sin2x=0 ⇔ cos2x – 2sin⁡x.cos⁡x = 0

⇔ cos⁡x (cos⁡x – 2sin⁡x )=0

*

b) 2 sin⁡(2x-40º )=√3

⇔ sin⁡(2x-40º )=√3/2

*

Ví dụ 3: Giải các phương trình sau: (√3-1)sinx = 2sin2x.

*

Dạng 2: Phương trình bậc nhất có một hàm lượng giác

Phương pháp: Đưa về phương trình cơ bản, lấy ví dụ như asinx + b = 0 ⇔ sinx = -b/a

Ví dụ: Giải phương trình sau:

*

Dạng 3: Phương trình bậc hai có một hàm lượng giác 

Phương pháp

Phương trình bậc hai đối với một hàm số lượng giác là phương trình gồm dạng :

a.f2(x) + b.f(x) + c = 0 cùng với f(x) = sinu(x) hoặc f(x) = cosu(x), tanu(x), cotu(x).

Cách giải:

Đặt t = f(x) ta bao gồm phương trình : at2 + bt +c = 0

Giải phương trình này ta tìm được t, từ bỏ đó tìm kiếm được x

Khi để t = sinu(x) hoặc t = cosu(x), ta tất cả điều kiện: -1 ≤ t ≤ 1

Ví dụ: sin2x +2sinx – 3 = 0

*

Ví dụ 2: 1 + sin2x + cosx + sinx = 0

Lời giải:

⇔ 1 + 2 sin⁡x cos⁡x + 2(cos⁡x+sin⁡x ) = 0

⇔ cos2⁡x + sin2⁡x + 2 sin⁡xcos⁡x + 2 (cos⁡x+sin⁡x )=0

⇔ (sin⁡x + cos⁡x)2 + 2 (cos⁡x+sin⁡x )=0

*

Dạng 4: Phương trình hàng đầu theo sinx và cosx

Xét phương trình asinx + bcosx = c (1) cùng với a, b là các số thực không giống 0.

*

*

Ví dụ: Giải phương trình sau: cos2x – sin2x = 0.

*

Dạng 5: Phương trình lượng giác đối xứng, phản nghịch đối xứng

Phương pháp

Phương trình đối xứng là phương trình có dạng:

a(sinx + cosx) + bsinxcosx + c = 0 (3)

Phương pháp giải:

Để giải phương trình bên trên ta áp dụng phép để ẩn phụ:

*

Thay vào (3) ta được phương trình bậc nhì theo t.

Ngoài ra bọn họ còn gặp phương trình phản nghịch đối xứng tất cả dạng:

a(sinx – cosx) + bsinxcosx + c = 0 (4)

Để giải phương trình này ta cũng đặt

*

Thay vào (4) ta dành được phương trình bậc nhị theo t.

Xem thêm: Tín Ngưỡng Phồn Thực Trong Văn Hóa Việt, Tín Ngưỡng Dân Gian Việt Nam

Ví dụ 1: Giải phương trình sau: 2(sinx + cosx) + 3sin2x = 2.

*

Hy vọng cùng với những kỹ năng mà công ty chúng tôi vừa chia sẻ có thể giúp các bạn hệ thống lại kỹ năng về phương trình lượng giác cơ phiên bản từ đó áp dụng vào làm bài xích tập lập cập và đúng chuẩn nhé