Các bài toán hình luôn là một đề bài hắc búa đối với học sinh. Toán hình đòi hỏi bạn phải có tư duy tốt. Để giúp các em nắm vững về các dạng bài này, temperocars.com giới thiệu các bài toán hình lớp 9 chứng minh về đường tròn.
Bạn đang xem: Chứng minh hình tròn
CÁC BÀI TOÁN CHỨNG MINH VỀ ĐƯỜNG TRÒN
A. Lý thuyết cần nắm vững
1. Sự xác định đường tròn. Tính chất đối xứng của đường trònĐường tròn tâm O bán kính R (Với R>0) là hình gồm các điểm cách O một khoảng R.
+ Khi OM = R, lúc này điểm M nằm trên đường tròn.
+ Khi OM
+ Khi OM > R ta có điểm M nằm bên ngoài đường tròn.

Qua ba điểm không thẳng hàng, bao giờ cũng vẽ được một và chỉ một đường tròn. Đường tròn có vô số trục đối xứng, đó là bất kì đường nào của nó.
2. Đường kính và dây của đường tròn. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Định lý:Trong một đường tròn, dây lớn nhất là đường kính
Định lý:Đường kính vuông góc với một dây thì đi qua trung điểm của dây đó.Đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây đó.Định lý:Trong một đường tròn:
Hai dây cung bằng nhau khi và chỉ khi chúng cách đều tâmTrong hai dây không bằng nhau, dây lớn hơn khi và chỉ khi chúng gần tâm hơn.Định lý:Trong một đường tròn:
Hai cung bằng nhau khi và chỉ khi chúng cách đều tâm

Hai cung bị chắn giữa hai dây song song thì bằng nhau
Đường kính đi qua điểm chính giữa của một cung thì vuông góc với dây căng cung ấy và chia dây ấy thành hai phần bằng nhau.Đường kính đi qua trung điểm của một dây (không phải là đường kính) thì chia cung căng dây ấy thành hai phần bằng nhau.Lưu ý: Khi nói cung AB mà không chú thích gì thêm, ta hiểu đó là cung nhỏ AB.
Vị trí tương đối của đường thẳng và đường tròn. Dấu hiệu nhận biết tiếp tuyến của đường tròn.Đường thẳng và đường tròn không giao nhau khi và chỉ khi chúng không có điểm chung.
Đường thẳng và đường tròn tiếp xúc nhau khi và chỉ khi chúng có một điểm chung
Đường thẳng và đường tròn cắt nhau khi và chỉ khi chúng có hai điểm chung.
Xem thêm: Thang Bảng Lương Theo Vị Trí Việc Làm Năm 2022 Của Cán Bộ Công Viên Chức